DWBM

DWBM

sábado, 1 de octubre de 2016

Homotecia

Homotecia:


La Homotecia es una transformación geométrica plana, en la cual los puntos relacionados o transformados se denominan homotéticos, y cumplen las siguientes condiciones:
Los puntos homotéticos están alineados con un tercero fijo llamado centro de la Homotecia (O).
La relación entre los segmentos definidos por este centro y los puntos transformado y original es una constante denominada razón de la homotecia (k).

Dos figuras homotéticas guardan relación de semejanza.
El centro de la Homotecia es invariante, y las rectas que pasan por el centro de la Homotecia también lo son, aunque no lo son por puntos (los puntos no son dobles).
En una Homotecia pueden darse los siguientes casos:
  • Si la constante k es mayor que 0, la Homotecia se denomina directa, y en ella los puntos homotéticos es-tán ambos al mismo lado del centro de la Homotecia.
  • Si la constante k es menor que 0, la Homotecia se denomina inversa, y en ella los puntos homotéticos están en lados diferentes con respecto al centro de la Homotecia.
  • Si la constante k es 1, la figura homotética coincide con la original, y la transformación se denomina Función Identidad.
  • Si la constante k es -1, la Homotecia se convierte en una Simetría Central (ver capítulo 2.4 de este libro).
  • Si el valor absoluto de la constante k es mayor que 1, la Homotecia produce un aumento de tamaño (la figura final es mayor que la original).}
  • Si el valor absoluto de la constante k es menor que 1, la Homotecia produce una disminución de tamaño (la figura final es menor que la original).

Dos rectas homotéticas siempre son paralelas, y la razón de longitud de dos segmentos homotéticos es igual a la razón de la homotecia (k).
La Homotecia es una transformación plana reversible, esto es, si aplicamos una homotecia a una figura y después aplicamos una segunda homotecia de igual centro y con igual razón pero de diferente signo, obtenemos la figura original.
Una Homotecia de centro impropio (en el infinito) es una Traslación 


No hay comentarios.:

Publicar un comentario